我们北京社招数字推理部分的考核包括两种题型:数列推理和数图推理,下面我们分别讲解:
一 、数列推理题型分析
所谓数列推理,就是在每道试题中呈现一组按某种规律排列的数列,但这一数列中有意地空缺了一项,要求考生对这一数列进行观察和分析,找出数列的排列规律,从而根据规律推导出空缺项应填的数字,然后在供选择的答案中找出应选的一项,在答题纸上将相应题号下的选项涂黑。
在解答数列推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。在进行此项测验时,必然会涉及到许多计算,这时,要尽量多用心算,少用笔算或不用笔算。
两个数列规律有时交替排列在一列数字中,是数列推理测验中一种较为常见的形式。只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。 即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
需要说明一点:近年来数列推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。 此时,与其“卡”死在这里,不如抛开这道题先做别的题。在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。
在做这些难题时,有一个基本思路:“尝试错误”。很多数列推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
二、数列推理题的总体解题方法和规律
数列推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助:
1.快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。
2.推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。
3.空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。
4.若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。在实际解题过程中,根据相邻数之间的关系我把这些规律分为十三类:
(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);
(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减;
(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;
(4)二级等差:相邻数之间的差或比构成了一个等差数列;
(5)二级等比数列:相邻数之间的差或比构成一个等比数理;
(6)加法规律:前两个数之和等于第三个数;
(7)减法规律:前两个数之差等于第三个数;
(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;
(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;
(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,
也可能是两个规律的数列交叉组合成一个数列;
(11)隔项规律:数列相隔两项呈现一定规律;
(12)全奇 、全偶规律;
(13)排序规律。
数列推理的另类解题方法介绍:
1.多掌握一些数字推理的规律与公式,并达到运用自如的程度。
2.“尝试错误法”。即在做题时先试用一种规律,如找不到正确答案再试用第二种规律,用到第三规律,如找到了正确选项,那便对了。如仍找不到正确选项,就需暂时放弃这道题,因为这道题对这位应试者来说就是难题了。这就是“尝试错误法”。这道难题需放到最后,有时间时再试着找规律,或者是采取“大胆猜测法”选择一个应试者认为正确的选项,并将答题卡上相应的选项涂黑。
3.“代入法”。即将你认为正确的选项代入到题干中去,看是否正确,如正确,说明应试者选对了;如错误,则需代入下一个选项,至到代入最后一个选项(共四个)找出正确答案为止。不过,这种方法较费时间,使用时应准确.快速进行。
三、数列推理典型规律和试题详解
下面我们分类介绍一些比较典型或具有代表性的试题,它们是经常出现在数列推理测验中的,熟知并掌握它们的应答思路与技巧,对提高成绩很有帮助。但需要指出的是,数列排列的方式(规律)是多种多样的,限于篇幅,我们不可能穷尽所有的排列方式,只是选择了一些最基本、最典型、最常见的数列排列规律,希望考生在此基础上熟练掌握,灵活运用,达到举一反三的效果。实际上,即使一些表面看起来很复杂的排列现象,只要我们对其进行细致分析和研究,就会发现,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想效果。
(一)等差数列及其变式
【例题1】2,5,8,()
A 10 B
【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。
【例题2】3,4,6,9,(),18
A 11 B
【解答】答案为C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,……。显然,括号内的数字应填13。在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。
(二)等比数列及其变式
【例题3】3,9,27,81()
A 243 B
【解答】答案为A。这也是一种最基本的排列方式,等比数列。其特点为相邻两个数字之间的商是一个常数。该题中后项与前项相除得数均为3,故括号内的数字应填243。
【例题4】8,8,12,24,60,()
A 90 B
【解答】答案为C。该题难度较大,可以视为等比数列的一个变形。题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,15,2,25,3,因此括号内的数字应为60×3=180。这种规律对于没有类似实践经验的应试者往往很难想到。我们在这里作为例题专门加以强调。该题是1997年中央国家机关录用大学毕业生考试的原题。
【例题5】8,14,26,50,()
A 76 B
【解答】答案为B。这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。故括号内的数字应为50×2-2=98。
(三)等差与等比混合式
【例题6】5,4,10,8,15,16,(),()
A 20,18 B 18,
【解答】此题是一道典型的等差、等比数列的混合题。其中奇数项是以5为首项、等差为5的等差数列,偶数项是以4为首项、等比为2的等比数列。这样一来答案就可以容易得知是C。这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型。
(四)求和相加式与求差相减式
【例题7】34,35,69,104,()
A 138 B
【解答】答案为C。观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173。在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律。
【例题8】5,3,2,1,1,()
A -3 B
【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5与第二项3的差等于第三项2,第四项又是第二项和第三项之差……所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C。
(五)求积相乘式与求商相除式
【例题9】2,5,10,50,()
A 100 B
【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D。
【例题10】100,50,2,25,()
A 1 B
【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。
(六)求平方数及其变式
【例题11】1,4,9,(),25,36
A 10 B
【解答】答案为D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。
【例题12】66,83,102,123,()
A 144 B
【解答】答案为C。这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12的平方再加2,得146。这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了。
(七)求立方数及其变式
【例题13】1,8,27,()
A 36 B
【解答】答案为B。各项分别是1,2,3,4的立方,故括号内应填的数字是64。
【例题14】0,6,24,60,120,()
A 186 B
【解答】答案为B。这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1的立方减1,第二个数是2的立方减2,第三个数是3的立方减3,第四个数是4的立方减4,依此类推,空格处应为6的立方减6,即210。
(八)双重数列
【例题15】257,178,259,173,261,168,263,()
A 275 B
【解答】答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,……。也就是说,奇数项的都是大数,而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式。而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式。只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了。
(九)奇偶项规律
【例16】 257,178,259,173,261,168,263,( )
A.275 B
【解析】 答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小……也就是说,奇数项的都是大数、而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看出,奇数项是一种等差数列的排列方式,而偶数项也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。
另外还要补充说明一点,近年来数列推理题的趋势是越来越难。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来答难题。这种处理不但节省了时间,保证了容易题目的得分率,甚至会对难题的解答有所帮助。
四、数列推理分类训练
1.自然数列
[例9]3,4,6,9,( )
A.10 B.
答案C。
2.奇数列
[例10]3,4,7,12,( )
A.18 B.19. C.20 D.21
答案B。
3.偶数列
[例11]14,16,20,26,34( )
A.22 B.
答案D。
[例12]1,2,2,4,3,8,4,14,5,( )
A.20 B.
答案B。
4.等差数列
[例13]3,5,9,15,23,( )
A.33 B.
答案A。
[例14]23,45,67,89,( )
A.910 B.
答案B。
5.等比数列
[例15]1,3,8,24,2,6,15,( )
A.30 B.
答案D。
[例16]24,18,27/2,81/8,( )
A.81/32 B.81/
答案C。
6.加法数列
[例17]25,32,37,47( )
A.56 B.
答案C。
[例18]4,3,1,12,9,3,17,5( )
A.12 B.
答案A。
7.减法数列
[例19]86,72,63,54,45,( )
A.38 B.
答案C。
[例20]19,4,18,3,16,1,17( )
A.5 B.
答案D。
8.乘法数列
[例21]6,2,12,24( )
A.185 B.
答案C。
[例22]1,2,3,7,22,( )
A.150 B.
答案B。
9.除法数列
[例23]81,3,27,1/9,( )
A.3 B.
答案D。
[例24]12,2,2,3,14,2,7,1,18,3,2,3,40,10( ),4
A.4 B.
答案D。
10.平方数列
[例25]5,8,17,24,37( )
A.40 B.
答案C。
[例26]1,2,6,15,31( )
A.45 B.
答案D。
11.立方数列
[例27]0,7,26,63,( )
A.100 B.
答案B
[例28]1,4,8,11,27,30,64,67,125,( )
A.126 B.
答案C。
12.质数数列(大于1,且能被本身与1整除之数)
[例29]15,17,20,25,32,( )
A.43 B.
答案A。
13.分数数列
14.双重数列
[例32]23,23,46,48,92,98,184,198,( ),( )
A.356;359 B.368;
答案C。
[例33]2,18,9,36,4,28,7,35,5,( ),9
A.35 B.
答案B。
15.小数数列
[例34]0.5,5.4,9.3,12.2,( )
A.14.1 B.
答案A。
[例35]4.2,8.2,16.4,64.4,( )
A.250.8 B.
答案C。
16.
17.幂数列
[例38]1,5,16,27,16,( )
A.1 B.
答案A。
[例39]9,32,75,144( )
A.232 B.
答案D。
18.倍数数列
[例40]21,3,12,27,30,( )
A.10 B.
答案C。
[例41]1,2,3,7,46,( )
A.39 B.
答案D。
19.合数数列(大于1的非质数的整数)
[例42]4,6,8,9,10,( )
A.11. B.
答案B。
[例43]2,6,12,20,29,( ),51
A.30 B.
答案B。
20.数字组合数列
[例44]12,3,4,15,3,5,18,6,( )
A.3 B.
答案A。
[例45]15,3,5,9,16,3,12,4,( ),2,4,9
A.17 B.
答案B。
21.数字排序数列
[例48]39-1,38+2,37-3,36+1,35-2,34+3,…
A.1-1 B.-1
答案D。
[例49]1×3,2×2,1×1,2×3,1×2,2×1,1×3…
A.1×3 B.2×
答案B。
22.非合数数列(质数前面有个1的数列)
[例50]11 22 33 45 ( ) 71
A 55 B
答案C。
23、双重数列与组合数列
[例3]5,40,8,32,4,28,7,( ),6
A.36 B.
答案D。
[例4]20,4,5,16,2,8,4,4,( ),9,21,3
A.17 B.
答案B。
[例5]1+2,2+4,3+6,1+8,2+10,3+12…
A.1+24 B.2+
答案D。
24、
五、数列推理思路整理
1、 4,5,( ),14,23,37
[A]6 [B]7 [C]8 [D]9
(思路:前两个数相加等于第三数)
2、 6,3,3,( ),3,-3
[A]0 [B]1 [C]2 [D]3
(思路:前两个数相减等于第三数)
3、 6,9,( ),24,39
[A]10 [B]11 [C]13 [D]15
(思路:前两个数相加等于第三数)
4、 -2 -1 1 5 (C) 29(2000年题)
A. B
(思路:后数减前一个数等于2的0、1、2、3方)
5、 6, 18, ( ) ,78 ,126 (2001年题)
A.40 B
(思路:后数减前一个数分别为12的1倍、2倍、3倍)
6、 375, 127, 248, -121, ( )
A. 369 B.
(思路:后两个数相加和为前一个数。)
7、 1 ,2 ,2 ,4,( ),32
A、4 B、
(思路:前两个数相乘得后一个数)
8、 2/5, 4/9, 6/13, 8/17 ,( )
A、10/19 B、11/
(思路:分子为偶数列,分母为公差是4的数列)
9、 155 ,132, 109 ,86 ,( )
A、23 B、
(思路:此为一组公差为23的等差数列)
六、数图推理专项突破
所谓数图推理,就是在每道试题中呈现一组按某种规律的包含数字的原型图,但这一数图中有意地空缺了一格,要求考生对这一数图进行观察和分析,找出数图的内部规律,从而根据规律推导出空缺处应填的数字,然后在供选择的答案中找出应选的一项,在答题纸上将相应题号下的选项涂黑。
数图推理从形式上看是比较难的,原因是我们不知道这种题的解题思路和方法;如果我们知道了这种题的解题思路和方法,就会发现这种题很容易,属于较易题型。
数图推理的解题规律:图形内的数字之间加、减、乘、除的自由组合,注意数字之间组合的方向和顺序就可以了,下面我们用例题来讲解:
例[1]
A.1 B.
[解析] 选C,这到题比较简单,规律是把图里面的对角的数字相加的和相等。
[例2]
A.41 B.
[解析] 选D,这道题比较复杂一点,这类题的规律是:中心周围的数字通过加、减、乘、除的自由组合得出中心的数字。就这道题而言就是:左对角相加的和加上右对角的乘积的总和等于中心数。
[例3]
A.52 B.
[解析] 选B,这道题比较复杂一点,这类题的规律是:中心周围的数字通过加、减、乘、除的自由组合得出中心的数字。总的规律和上一道题是一样的,只是周围数字的组合规律不同而已,就这道题而言就是:左对角相减的差乘于右对角的相加的和等于中心数。