考研网,考研考生的精神家园。祝大家考研成功 梦想成真!
网站公告 |
您现在的位置: 教育频道-新都网 >> 考研 >> 考研数学 >> 高等数学 >> 正文

2020考研数学高数基础知识点:导数与微分

作者:佚名    文章来源:中公考研    点击数:    更新时间:2018/11/27

    想考研先复习数学,
    1、考试内容
    (1)导数和微分的概念;
    (2)导数的几何意义和物理意义;
    (3)函数的可导性与连续性之间的关系;
    (4)平面曲线的切线和法线;
    (5)导数和微分的四则运算;
    (6)基本初等函数的导数;
    (7)复合函数、反函数、隐函数以及参数方程所确定的函数的微分法;
    (8)高阶导数;
    (9)一阶微分形式的不变性;
    (10)微分中值定理;
    (11)洛必达法则;
    (12)函数单调性的判别;
    (13)函数的极值;
    (14)函数图形的凹凸性、拐点及渐近线;
    (15)函数图形的描绘;
    (16)函数的最大值和最小值;
    (17)弧微分、曲率的概念;
    (18)曲率圆与曲率半径(其中16、17只要求数一、数二考试掌握,数三考试不要求)。
    2、考试要求
    (1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系;(2)了解导数的物理意义,会用导数描述一些物理量(数一、数二要求,数三不要求);(3)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;(4)了解高阶导数的概念,会求简单函数的高阶导数;(5)会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;(6)理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;(7)掌握用洛必达法则求未定式极限的方法;(8)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;(9)会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;(10)了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径(数一、数二要求、数三不要求) 。
    3、常考题型
    (1)导数定义;(2)求显函数、隐函数、分段函数、积分上限函数、幂指函数等各种类型的导数与微分;(3)利用函数的单调性证明不等式;(4)求函数的极值与最值;(5)曲线的凹凸性、拐点、渐近线;(6)证明函数不等式;(7)方程根的存在性与个数;(8)洛必达法则求函数极限;(9)用介值定理、零点定理、罗尔定理、拉格朗日中值定理证明不等式。
    4、复习建议
    (1)加强对基础概念的理解
    加强对基础概念的理解是学习这一部分的关键。原因有两个:第一:导数这章内容相对比较简单。比如求导公式,大家在高中就接触过。第二:考研中考得最多的就是对导数概念的理解以及对导数应用中极值概念的理解。比如在求分段函数分段点的导数要用导数的定义来求,同学们就经常直接求一侧函数的导数再算极限,而这种情况只有建立在导函数连续的基础上才成立。从这些概念本身来看,相对来说比较简单,但是考法却是比较深入。所以,希望同学们要加深对本章概念的理解,千万不要一知半解就开始盲目的做题。
    (2)加强对常考点的掌握
    本章相对比较简单,而且重难点分明。具体来说,分为三个章节。第一部分:可导与可微。其中导数定义是重点。导数的定义几乎是每年必考,而且考察的往往都是变形的形式,但实质上都是在考察对极限的理解。第二部分:导数计算。复合函数求导是重点,并在此基础上掌握幂指函数求导,隐函数求导及参数方程求导。高阶导数部分,大家要掌握常见函数高阶导数的六大公式及莱布尼兹公式。第三部分:导数的应用。其中极值本身的概念也是一个很大的考点,包括极值的必要的条件以及极值的第一和第二充分条件。每年考研都会有一些相关的选择题。同理,题目考察拐点的时候,同时也考察了凹凸性,导函数的单调性等概念。因此,拐点的概念是考察的一个方向,同时拐点的必要条件及第一和第二充分条件也是重要考点。请大家注意:只要学好极值及单调性,相应的凹凸性和拐点也可以类比迁移;极值研究的是一阶导的正负号,相应的凹凸性研究的是二阶导的正负号。
    (3)多练题,提高计算能力
    在大家理解了重点知识以及明确了考试重点之后,接下来就需要做题巩固了。针对考试要求的每个考点进行做题巩固,关键是每做一个题要掌握这道题的解题思路,基本就是从已知条件怎么找到联系结果的突破点;另外对于每一类题型要做到勤总结,多整理错题本,以便每次回顾使用。
    

(责任编辑:admin)


查看更多关于的文章
快速导航
培训信息
特别说明
    由于各方面情况的不断调整与变化,新都教育所提供的招生和考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
版权声明
    凡本网注明“来源:新都教育”的所有作品,版权均属于新都网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:新都教育”。违反上述声明者,本网将追究其相关法律责任。
  凡本网注明“来源:XXXXX(非新都教育)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
  如作品内容、版权等存在问题,请在两周内同本网联系,联系邮箱:newdu2004@tom.com
  本网欢迎原创作品投稿,投稿邮箱:newdu2004@tom.com
  • 考研栏目导航
  • 招考资讯
    考试新闻
    招生简章
    考试大纲
    考研政策
    分数线及成绩
    录取调剂
    院校信息
    专业介绍
    综合新闻
    公告通知
    考研政治
    政治指导
    马克思主义基本原理概论
    毛泽东思想和社会主义理论
    中国近现代史纲要
    思想道德修养与法律基础
    形势与政策以及当代世界经济与政治
    历年真题
    模拟试题
    专项训练
    考研英语
    英语指导
    词汇
    语法长难句
    阅读理解
    写作
    完型填空
    翻译
    新题型
    历年真题
    模拟试题
    专项训练
    考研数学
    数学指导
    高等数学
    线性代数
    概率论与数理统计
    历年真题
    模拟试题
    专项训练
    考研专业课
    综合指导
    计算机学科专业基础综合
    植物生理学与生物化学
    动物生理学与生物化学
    教育学专业基础综合
    心理学专业基础综合
    管理类联考综合能力
    法硕联考专业基础
    法硕联考综合
    历史学基础
    西医综合
    中医综合
    化学
    日语
    俄语
    其它专业课
    历年真题
    模拟试题
    专项训练
    考研复试
    综合辅导
    综合辅导
    真题解读
    专家访谈
    专家解读
    备考经验
    经验技巧
    考研故事
    综合辅导
    考研网,考研门户网站,提供考研院校信息,考研论坛,报考指南,招生简章,复习资料,专业试卷,考研题库,考研政治,考研英语,考研数学,考研分数,考研调剂,考研经验,考研心情等考研信息。
    Copyright © 2004-2009 Newdu.com All Rights Reserved 京ICP备09058993号
    本站为非经营性网站,收藏资料纯属个人爱好,若有问题请联系管理员:newdu2004@tom.com