考研网,考研考生的精神家园。祝大家考研成功 梦想成真!
网站公告 |
您现在的位置: 教育频道-新都网 >> 考研 >> 考研数学 >> 高等数学 >> 正文

2022考研数学高数求极限的16种方法

作者:佚名    文章来源:跨考教育    点击数:    更新时间:2021/2/20

    春节假期已经结束,22的考研er也该抖抖精神开始复习数学,为以后打好基础。高数是2022考研数学复习的重要部分,建议考研数学基础不好的小伙伴早点开始复习,下面小编整理了2022考研数学高数求极限的16种方法,一起来看看吧。
    首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致。
    1、极限分为一般极限,还有个数列极限
    (区别在于数列极限是发散的,是一般极限的一种)。
    2、解决极限的方法如下
    1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小)
    2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
    首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
    洛必达法则分为三种情况
    1)0比0无穷比无穷时候直接用
    2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了
    3)0的0次方,1的无穷次方,无穷的0次方
    对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)
    3、泰勒公式
    (含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助
    4、面对无穷大比上无穷大形式的解决办法
    取大头原则最大项除分子分母!看上去复杂处理很简单。
    5、无穷小与有界函数的处理办法
    面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!
    6、夹逼定理
    (主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
    7、等比等差数列公式应用
    (对付数列极限)(q绝对值符号要小于1)
    8、各项的拆分相加
    (来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
    9、求左右求极限的方式
    (对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,Xn的极限与Xn+1的极限是一样的,应为极限去掉有限项目极限值不变化。
    10、两个重要极限的应用
    这两个很重要!对第一个而言是x趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极限)
    11、还有个方法,非常方便的方法
    就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。x的x次方快于x!,快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)。当x趋近无穷的时候他们的比值的极限一眼就能看出来了
    12、换元法
    是一种技巧,不会对某一道题目而言就只需要换元,但是换元会夹杂其中
    13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。
    14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。
    15、单调有界的性质
    对付递推数列时候使用证明单调性。
    16、直接使用求导数的定义来求极限
    (一般都是x趋近于0时候,在分子上f(x)加减某个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(0)=0时,f(0)的导数=0的时候就是暗示你一定要用导数定义!)
    

(责任编辑:admin)


查看更多关于的文章
快速导航
培训信息
特别说明
    由于各方面情况的不断调整与变化,新都教育所提供的招生和考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
版权声明
    凡本网注明“来源:新都教育”的所有作品,版权均属于新都网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:新都教育”。违反上述声明者,本网将追究其相关法律责任。
  凡本网注明“来源:XXXXX(非新都教育)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
  如作品内容、版权等存在问题,请在两周内同本网联系,联系邮箱:newdu2004@tom.com
  本网欢迎原创作品投稿,投稿邮箱:newdu2004@tom.com
  • 考研栏目导航
  • 招考资讯
    考试新闻
    招生简章
    考试大纲
    考研政策
    分数线及成绩
    录取调剂
    院校信息
    专业介绍
    综合新闻
    公告通知
    考研政治
    政治指导
    马克思主义基本原理概论
    毛泽东思想和社会主义理论
    中国近现代史纲要
    思想道德修养与法律基础
    形势与政策以及当代世界经济与政治
    复习方法
    历年真题
    模拟试题
    专项训练
    考研英语
    英语指导
    词汇
    语法长难句
    阅读理解
    写作
    完型填空
    翻译
    新题型
    阅读材料
    复习方法
    历年真题
    模拟试题
    专项训练
    考研数学
    数学指导
    高等数学
    线性代数
    概率论与数理统计
    公式定理
    复习方法
    历年真题
    模拟试题
    专项训练
    考研专业课
    综合指导
    计算机学科专业基础综合
    植物生理学与生物化学
    动物生理学与生物化学
    教育学专业基础综合
    心理学专业基础综合
    历史学基础
    西医综合
    中医综合
    经济学
    管理学
    化学
    日语
    俄语
    新闻传播
    农学
    法学
    其它专业课
    复习方法
    历年真题
    模拟试题
    专项训练
    专业硕士
    综合指导
    管理类联考综合能力
    法硕联考专业基础
    法硕联考综合
    经济类联考综合能力
    金融硕士
    翻译硕士
    会计硕士
    新闻与传播硕士
    考研复试
    综合辅导
    综合辅导
    真题解读
    专家访谈
    专家解读
    备考经验
    经验技巧
    考研故事
    综合辅导
    考研网,考研门户网站,提供考研院校信息,考研论坛,报考指南,招生简章,复习资料,专业试卷,考研题库,考研政治,考研英语,考研数学,考研分数,考研调剂,考研经验,考研心情等考研信息。
    Copyright © 2004-2009 Newdu.com All Rights Reserved 京ICP备09058993号
    本站为非经营性网站,收藏资料纯属个人爱好,若有问题请联系管理员:newdu2004@tom.com